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Abstract

This document describes the theoretical basis of the modules developed for the BEAM toolbox

to mask clouds present in images acquired by the Compact High Resolution Imaging Spectrometer

(CHRIS).

Accurate and automatic detection of clouds in satellite scenes is a key issue for a wide range

of remote sensing applications. With no accurate cloud masking, undetected clouds are one of the

most significant source of error in both sea and land cover biophysical parameter retrieval. The

objective of the algorithms presented in this document is to detect clouds accurately providing

probability and cloud abundance rather than binary flags. For this purpose, the method exploits

the special characteristics of the CHRIS/PROBA instrument, such as the high number of spectral

bands, the spatial resolution, and the specific band locations.

Cloud Screening ATBD L. Gómez-Chova et al. 3
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Acronyms and Abbreviations

ATBD Algorithm Theoretical Basis Document

ATGP Automated Target Generation Process

BEAM Basic ERS & Envisat (A)ATSR and MERIS

CCD Charge Coupled Device

CHRIS Compact High Resolution Imaging Spectrometer

CWV Columnar Water Vapor

DEM Digital Elevation Model

DOY Day Of Year

EM Expectation–Maximization

ESA European Space Agency

FCLSU Fully Constrained Linear Spectral Unmixing

FZA Fly-by Zenith Angle

HDF Hierarchical Data Format

LSU Linear Spectral Unmixing

MAP Maximum a posteriori Probability

MDL Minimum Description Length criterion

NDVI Normalized Difference Vegetation Index

NIR Near–infraRed

PROBA PRoject for On-Board Autonomy

ROI Regions Of Interest

SZA Sun Zenith Angle

TOA Top Of Atmosphere

VIS Visible

VISAT Visualisation and Analysis Tool

VNIR Visible and Near InfraRed

VZA View Zenith Angle
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1 Introduction

In remote sensing images acquired by instruments working in the visible and near-infrared

range (VNIR) of the electromagnetic spectrum, undetected clouds are the most significant source

of error for true ground reflectance estimation (Simpson, 1999). Therefore, the operational use of

these images can be hampered by the presence of clouds.

The simplest approach to cloud detection in a scene is the use of a set of static thresholds

(reflectance, temperature) applied to every pixel in the image, which provides a cloud flag (bi-

nary classification). These methods can fail for several reasons, such as subpixel clouds, high

reflectance surfaces, illumination and observation geometry, sensor calibration, variation of the

spectral response of clouds with cloud type and height, transparency of clouds, etc. Therefore,

cloud screening approaches heavily depend on the characteristics of each sensor. Obviously, its

spectral and spatial resolution, or the spectral range are critical. In particular, the Compact High

Resolution Imaging Spectrometer (CHRIS) (Barnsley et al., 2004) provides us with a number of

channels in the visible (VIS) and near infrared (NIR) range with enough spectral resolution to

increase the cloud detection accuracy (Diner et al., 1999): it covers a spectral range from 400 nm

to 1050 nm with a maximum spatial resolution of 17 or 34 m at nadir depending on the acquisition

mode (more information on http://earth.esa.int/proba/).

CHRIS is mounted on board the European Space Agency (ESA) small satellite platform called

PROBA (Project for On Board Autonomy). Thanks to the PROBA platform pointing capabilities,

the acquisition plan tries to avoid acquisitions with cloud coverage, but occasionally images are

partially affected by clouds. In these cases, users that requested the acquisition have a special

interest on both cloud location and contribution to the registered spectra.

In this context, the main objective of this module is to develop and validate a method for

cloud detection using self-contained information provided by CHRIS data. The method should

be capable of: detecting clouds accurately providing probability and cloud abundance instead

of flags. For this purpose, the method exploits the characteristics of CHRIS, such as the high

number of spectral bands, the spatial resolution, and the specific band locations. Basically, it

evaluates the information coming from the spectral signature and from several specific features

characterizing clouds in order to generate a probabilistic cloud mask, which indicates the cloud

abundance per pixel. Later it can be converted into a binary cloud mask by setting thresholds that

can be tuned depending on the application. As a consequence, by masking only the image areas

affected by cloud covers, the whole image is not necessarily discarded, thus making multitemporal

and multiangular studies possible.

Cloud Screening ATBD L. Gómez-Chova et al. 5



ESRIN/Contract No. 20442/07/I-LG Development of CHRIS/PROBA modules for the BEAM toolbox

2 Cloud Screening Algorithm

In this section, we present a cloud detection procedure which is constituted by the following

steps (Fig. 1):

1. Image Pre-Processing : a pre-processing stage of the CHRIS data to correct illumination

effects is necessary for their proper analysis.

2. Feature extraction: physically-inspired features are extracted to increase separability of

clouds and surface.

3. Image clustering : an unsupervised clustering is performed on the extracted features in order

to separate clouds from the ground-cover.

4. Cluster labeling : resulting clusters are subsequently labeled into geo-physical classes (iden-

tification of cloud clusters).

5. Spectral unmixing : a spectral unmixing is applied to the segmented image in order to obtain

an abundance map of the cloud content in the cloud pixels.

In the following, we analyze each of these components in detail.

2.1 Image Pre-Processing

A multispectral image consists of two spatial dimensions (along-track and across-track) and

one spectral dimension (wavelength). The image is registered by the instrument in a data-cube

where the along-track dimension, y, corresponds to the image lines; the across-track dimension,

x, is associated to the pixel line; and the spectral dimension, λ, represents the image bands. The

TOA 
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Cloud
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Probabilistic 
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Figure 1: Scheme of the cloud screening algorithm constituted by the preprocessing (TOA reflectance

derivation) and four main processing steps (grey boxes).
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size of the multispectral data-cube can be written in the form l × p × b, where l is the number of

image lines, p is the number of pixels per line, and b is the number of spectral bands.

CHRIS products are provided in top of the atmosphere (TOA) radiance (radiometrically cali-

brated data), and each pixel k is defined by {Lk(λ)}n
k=1

, where the number of pixels is n = l × p

and Lk ∈ R
b is the spectral signature sampled at b spectral bands of the VNIR spectral region

{λi}
b
i=1

∈ [400 − 1050], which location varies depending on the acquisition mode (see Fig. 3).

The cloud screening module requires as input the CHRIS image corrected of noises (see noise

reduction module ATBD for more details (Gómez-Chova, 2007)): drop-outs cannot be processed

since they present wrong values in some bands, and the vertical stripping introduces differences

between bands that affect features extracted from the spectra. This corrected radiance must be

pre-processed in order to estimate TOA reflectance. This allows us to remove in practice the

dependence on particular illumination conditions (day of the year and angular configuration) and

illumination effects due to rough terrain (cosine correction), since the method is intended to work

under many situations. TOA apparent reflectance is estimated according to:

ρ(x, y, λi) =
πL(x, y, λi)

cos(θ(x, y))I(λi)
, (2.1)

where L(x, y, λ) is the provided at-sensor upward radiance at the image location (x, y), I(λ) is the

extraterrestrial instantaneous solar irradiance, and θ(x, y) is the angle between the illumination

direction and the vector perpendicular to the surface. In the proposed algorithm, θ(x, y) is

approximated by the Solar Zenith Angle provided in the CHRIS HDF file attributes since one can

assume flat landscape and constant illumination angle for the area observed in a CHRIS image.

Finally, the Sun irradiance, I(λ), is taken from Thuillier et al. (2003), corrected for the acquisition

day, and convolved with the CHRIS spectral channels (Fig.2).

The extraterrestrial solar irradiance I(λ) given in Thuillier et al. (2003) is provided from 200

to 2400 nm in mW/m2/nm. It shall be corrected for the Julian day of year (DOY), J , according

to the following approximate formulae:

I(λ) =
1

(1 − 0.01673 cos(0.9856(J − 4)π/180))2
I(λ), (2.2)

where the day of year can be easily obtained from the Image Date metadata of the CHRIS HDF

file.

Since the reference extraterrestrial solar irradiance presents a different spectral sampling, it is

resampled to the CHRIS spectral channels. A specific CHRIS band, i, consists of the addition of

one or more CCD detector pixel elements depending on the band width. Therefore, the spectral

response of a CHRIS band, Si(λ), is the sum of the the spectral response S(λ) of the corresponding

detectors of the CCD array. Then, the mean solar irradiance for a given band, I(λi), is obtained

by integrating the extraterrestrial solar irradiance by its spectral response:

I(λi) =

∫

∞

0
Si(λ)I(λ)dλ

∫

∞

0
Si(λ)dλ

. (2.3)

The theoretical half-width of the instrument line-spread functions correspond to spectral resolu-

tions of 1.25 nm at 415 nm, increasing to 11.25 nm at 1050 nm. One could assume a Gaussian

Cloud Screening ATBD L. Gómez-Chova et al. 7
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Figure 2: Sun irradiance corrected for the day of the year and the CHRIS channels (left) and TOA

apparent reflectance estimated from the at sensor radiance (right).

response function, S(λ), for each element using its full-width half-maximum (FWHM), and sum

up all the elements of the band. However, in the header of the CHRIS HDF files, although the

CCD row number for lower and upper wavelengths of each band is provided, the FWHM of each

CCD element is not. Therefore, for the shake of simplicity, the spectral response of a CHRIS

band, Si(λ), is defined as a bell-shaped function depending on the mid-wavelength, λi, and the

band width, ∆λi, of the band, directly:

Si(λ) =
1

1 + |2(λ − λi)/∆λi|4
λi − ∆λi < λ < λi + ∆λi, (2.4)

where both the mid-wavelength (WlMid) and the band width (BWidth) values for each channel

are included in the CHRIS HDF file.

2.2 Feature Extraction

The measured spectral signature depends on the illumination, the atmosphere, and the sur-

face. Figure 3 shows CHRIS Mode 1 band locations compared with the spectral curve of healthy

vegetation, bare soil, and the atmospheric transmittance. The spectral bands free from atmo-

spheric absorptions contain information about the surface reflectance, while others are mainly

affected by the atmosphere.

At this step, rather than working with the spectral bands only, physically-inspired features

are extracted in order to increase the separability of clouds and surface covers. These features are

extracted independently from the bands that are free from strong gaseous absorptions, λi ⊂ BS ,

and from the bands affected by the atmosphere, λi ⊂ BA. A detailed analysis of the extracted

features follows. For illustration purposes, only the extracted features from a single given CHRIS

image (CHRIS-BR-050717-576C-41) are provided.

8 L. Gómez-Chova et al. Cloud Screening ATBD
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Figure 3: CHRIS Mode 1 band locations (boxes) superimposed to a reflectance spectra of healthy vege-

tation (dashed), bare soil (dash-dotted), and the atmospheric transmittance (solid).

2.2.1 Surface Features

Regarding the reflectance of the surface, one of the main characteristics of clouds is that they

present bright and white spectra (Fig. 4). We can exploit CHRIS bands for extracting information

about the target reflectance, i.e. cloud brightness and cloud whiteness for cloudy pixels:

• A bright spectrum means that the intensity of the spectral curve (related to the albedo)

should present relatively high values. Therefore, cloud brightness is calculated for each pixel

as the integral of spectrum, fBr =
∫

ρ(λ)dλ, which is approximated through trapezoidal

numerical integration:

f̂Br =
1

λmax − λmin

∑

λi⊂BS

ρ(λi+1) + ρ(λi)

2
(λi+1 − λi), (2.5)

which has the same units as ρ(λ), and differs from the average of the spectral bands since

it takes into account the distribution of the energy along the spectrum.

• A white spectrum means that the spectral signature must be flat along the spectrum. The

first derivative of the spectral curve should present low values, but noise and calibration

errors may reduce the accuracy in the estimation of the spectrum flatness when computing

the spectral derivative in bands with similar wavelengths. Therefore, we compute for each

pixel the deviation from the flatness as the (trapezoidal approximate) integral of e(λ) =

|ρ(λ) − f̂Br|:

fWh =
1

λmax − λmin

∑

λi⊂BS

e(λi+1) + e(λi)

2
(λi+1 − λi) (2.6)

Further surface features can be obtained by considering independently the VIS (λV IS ∈ [400−

700] nm) and NIR (λNIR ∈ [700−1000] nm) spectral ranges, where surface covers present different

reflectance properties. Therefore, instead of working with fBr and fWh, we can obtain 2 + 2

features from (2.5) and (2.6) respectively: fBr,V IS and fWh,V IS, computed using λi ⊂ (BS∩V IS);

and fBr,NIR and fWh,NIR, computed using λi ⊂ (BS∩NIR). For example, clouds over land should

Cloud Screening ATBD L. Gómez-Chova et al. 9
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Figure 4: Cloud brightness (top) and whiteness (bottom) features extracted from the TOA reflectance of

the CHRIS-BR-050717-576C-41 image.

be better recognized in fBr,V IS than in fBr,NIR since land covers have less reflectance in the VIS

range, while the opposite is true for clouds over sea.

2.2.2 Atmospheric Features

Regarding the atmospheric absorptions, another meaningful feature is the fact that clouds are

at a higher altitude than the surface. It is worth noting that atmospheric absorption depends on

the atmospheric constituents and the optical path. Since light reflected on high clouds crosses a

shorter section of the atmosphere, the consequence would be an abnormally short optical path,

thus weaker atmospheric absorption features. Atmospheric oxygen absorption and even water

vapor absorption (at 760 nm and 940 nm respectively) are candidate bands to be used in the

optical path estimation.

The use of atmospheric absorption in the oxygen-A band to infer cloud pressure, which is

related to cloud-top height, has been suggested by several authors (Yamamoto and Wark, 1961;

Chapman, 1962). In the case of medium resolution imaging spectrometers, several studies have

shown that the oxygen-A band is potentially efficient for determining the cloud-top pressure

(Fisher and Grassl, 1991; Buriez et al., 1997; Ramon et al., 2003). All these studies assume that

the two spectral channels located at the oxygen-A band (one outside, λout, and another inside, λin,

the absorption) allow the derivation of an apparent pressure which roughly represents the cloud

pressure. In particular, apparent pressure is calculated using an empirical polynomial function

of the oxygen transmission derived from the reflectance ratio ρ(λin)/ρ(λout). However, to obtain

reliable estimations of the cloud-top height is still a challenging problem affected by the instrument

radiometric and spectral resolution, the influence of ground reflectance, and the need of a reliable

surface pressure reference. These difficulties explain the little attention paid to this helpful feature

10 L. Gómez-Chova et al. Cloud Screening ATBD
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Figure 5: Estimation of the optical path, δ, from the O2 absorption band. Left : Effective atmospheric

vertical transmittance, exp(−τatm(λ)), estimated from a high resolution curve (top) taking into account

the for the spectral response (efficiency) of CHRIS channels (bottom). Right : the interpolated, ρ0(λ),

and measured, ρ(λ), reflectance inside the oxygen band, and the estimated reflectance at the maximum

absorption.

in cloud screening. In the case of CHRIS, Modes 1 and 5 present bands in the O2-A absorption,

which makes the inclusion of this atmospheric feature in the cloud screening scheme possible. In

the following paragraphs, we show the formulation proposed to extract an atmospheric feature

directly related with the optical path.

The light transmitted through a non-dispersive medium can be expressed using the Bouguer-

Lambert-Beer law:

L(λ) = L0(λ) exp

(

−
τ(λ)

µ

)

, (2.7)

where L0(λ) is the light entering into the medium, the term exp(−τ(λ)/µ) is the transmittance

factor, 1/µ is the optical mass obtained from the illumination and observation zenith angles, and

τ(λ) is the atmospheric optical depth. Since most of the radiation measured by the sensor has

been reflected by the surface, (2.7) can not be used to model the at-sensor radiance. However,

it provides a physical basis for the definition of a non-dimensional parameter that accounts for

atmospheric absorptions in typical remote sensing scenarios. In our case, the reference radiance

L0(λ) will be the radiance outside the absorption feature, calculated by interpolating the nearby

channels that are unaffected by absorptions, and L(λ) will be the radiance affected by gaseous

absorptions after crossing the TOA-surface-sensor path. The inversion of (2.7) provides τ(λ),

which is a measure of the strength of the gaseous absorptions in a certain spectral range. The

assumption is that variations in τ(λ) are driven by sharp changes in elevation as those due to

transitions between cloud-free and cloud-covered areas. Horizontal variations in the atmospheric

state are considered a second-order effect compared to cloud-to-surface elevation changes. An

equivalent atmospheric transmittance parameter could be calculated as the ratio L(λ)/L0(λ), but

the contribution of illumination and observation geometries would not be normalized.

Cloud Screening ATBD L. Gómez-Chova et al. 11
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Figure 6: Estimation of the optical path from the oxygen absorption (left) and water vapor (right) bands

for the CHRIS-BR-050717-576C-41image.

The atmospheric optical depth is decoupled into two contributions,

τ(λ) = τatm(λ) · δ , (2.8)

where τatm is an optical thickness reference spectrum at sea level for nadir illumination and

observation, and δ is a factor accounting for elevated surfaces such as clouds. The reference

τatm(λ) values are estimated for the channels of the instrument from a high spectral resolution

curve. The approach followed in this paper for the so-called Oxygen-A band can be devised from

Fig. 5, and the extracted feature is derived from (2.7) and (2.8) as:

fO2
(x, y) = −

µ(x, y)

τatm(λin)
ln

(

L(x, y, λin)

L0(x, y, λin)

)

, (2.9)

where the interpolated radiance at the absorption band is estimated from nearby channels,

L0(λin) = L(λout−inf ) + (λin − λout−inf )(L(λout−sup) − L(λout−inf ))/(λout−sup − λout−inf ).

An additional estimation of the optical path can be obtained from the water vapor absorption

in the NIR close to the end of the valid range of the sensor. In this case, the maximum water

vapor absorption (940 nm) is also acquired by Modes 1 and 5 only. In addition, the water vapor

distribution is extremely variable, thus it is not straightforward to relate this feature to the real

altitude. However, it is still valid for relative measurements inside the same image since almost

all the atmospheric water vapor is distributed in the first 2-3 km of the atmosphere below most of

the cloud types. The same approach than in the O2 case has been followed to obtain this feature

(Fig. 6)

fWV (x, y) = −
µ(x, y)

τatm(λin(x))
ln

(

L(x, y, λin(x))

L(x, y, λout−inf (x))

)

, (2.10)

where we assume that L0(λin) = L(λout−inf ) since the interpolation at the end of the spectral

range of the sensor is sometimes not possible.

It is worth noting that the extracted atmospherical features are not intended to estimate

altitude of clouds. They are an estimation of the optical path by taking into account important

issues such as the viewing geometry, atmospheric transmission, and sensor calibration. However,

this estimation is affected by the background reflectance of the surface and the atmospheric

conditions, which change from one image to another. These problems avoid the use of these

features in standard approaches based on thresholds or static models.

12 L. Gómez-Chova et al. Cloud Screening ATBD
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Figure 7: Result of the threshold-based cloud/land/water classification (left) and the growing algorithm

(right) for the CHRIS-BR-050717-576C-41image (significant pixels in white).

2.3 Image Clustering

As previously discussed, static thresholds applied to every pixel in the image can fail due

to subpixel clouds, sensor calibration, variation of the spectral response of clouds with cloud

type and height, etc. In this context, the following step in our methodology considers the use of

unsupervised classification methods to find groups of similar pixels in the image. Clustering meth-

ods assume that the input data is organized into a number of groups or clusters (Duda and Hart,

1973) according to a given distance measure in some representation space. We use an Expectation–

Maximization (EM) algorithm (Dempster et al., 1977) to estimate the parameters of a Gaussian

mixture model. The cluster algorithm is only applied to the regions of interest previously deter-

mined. The whole image clustering process is further described in the following subsections.

2.3.1 Regions of interest (ROIs)

Before applying a clustering algorithm, we should stress the fact that if clouds were not

statistically representative in a given image, clustering methods could not find small clouds or

could misclassify clouds as similar classes. Therefore, in addition to using representative features

along with the spectral channels, clustering improves when applied over the regions of the image

where clouds are statistically representative.

In order to find regions that could potentially contain clouds, we apply hard non-restrictive

thresholds to provide a first map of cloud-like pixels. These absolute thresholds were obtained

empirically and were applied to well-defined features: the brightness in the VIS and the NIR

region, the estimated water vapor absorption, and the NDVI (in order to exclude areas with pure

vegetation). Then, a region growing algorithm is carried out, along with a morphological process

that dilates cloudy areas. This way, we ensure that all possible clouds and their contiguous areas

will be considered in the clustering. The result of this process is far from providing a classification

map, but just a region of interest (ROI), in which presence of clouds is significant for the purpose

of clustering (Fig.7).
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2.3.2 Clustering the ROIs

The clustering algorithm is applied to all the pixels in the ROI X = {xk}
n
k=1

, where xk ∈ R
d is

the vector of extracted features for each pixel: xk = {fBr,V IS, fBr,NIR, fWh, fO2
, fWV }. Basically,

the aim of the clustering is to associate each input xk to one of the clusters ωj, j = 1 . . . c, in order

to separate different classes (or at least clouds and ground-cover) present in the scene. We impose

the following requirements to the clustering method: 1) taking advantage of all available features

(including atmospheric absorptions); 2) considering the full relationship among variables (without

applying independent tests to each feature); and 3) providing for each input soft association with

the clusters (membership or probability) value between zero and one, hkj, with the requirement

that the memberships sum to one.

2.3.3 Normal distributions and Expectation–Maximization algorithm

In multispectral image processing, the assumption that the distribution of images can be

approximated as a mixture of normally distributed samples is commonly accepted; and we make

the same assumption for the extracted features. Therefore, we consider the input as a mixture

of normal distributions and use the EM algorithm to obtain the maximum likelihood estimation

of the probability density function (pdf) of the Gaussian mixture (Duda and Hart, 1973). The

EM algorithm is an iterative procedure that involves two consecutive iterative steps. In the

E-step, we compute the posteriors (or membership) hkj of the pixel k associated to the jth

Gaussian component of the mixture. In the M-step, we use the obtained hkj to update the

mixture coefficient, αj , the mean, µj , and the covariance matrix, Σj, for each component of the

mixture:

µj =

∑

k hkjxk
∑

k hkj

Σj =

∑

k hkj(xk − µj)(xk − µj)
T

∑

k hkj

(2.11)

αj =
1

n

∑

k

hkj

The final pdf describes both the class of interest and the ground-cover class, and is worth noting

that both heterogeneous classes can be made up of more than one Gaussian component, each

representing a different subclass.

2.3.4 Clustering initialization

The clustering algorithm has to be started with initial values for the parameters of the pdf.

The k-means algorithm is used to obtain a first approach to the structure of the data in clusters.

This algorithm only needs the number of clusters c to be fixed, and minimizes the Euclidean

distance of the samples in one cluster to its mean. In k-means, input is associated only with the

cluster having the nearest center. The cluster center is the mean of all inputs associated with
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that cluster. Once the cluster centers are updated, samples may change to a different cluster so

an iterative procedure is followed until centers do not change.

2.3.5 MAP classification

Once we know the Gaussian components of the pdf of the data we perform a Gaussian maxi-

mum likelihood classification on the whole image. The algorithm assigns the pixel to the cluster

with the maximum a posteriori probability (MAP) generating a map with the clusters in the

image. The final estimates of the cluster membership for each pixel in the image hkj represent

the estimates of the posterior probabilities, which are used to compute the optimal cluster label

as:

ω̂k = argmax
j

{hkj} (2.12)

2.3.6 Remarks on the number of clusters

The proposed image clustering process relies on the key step of selecting the number of clusters,

c. At this point, several statistical criteria can be used, such as minimizing the Davies–Bouldin

index (Davies and Bouldin, 1979) or the Minimum Descriptive Length (MDL) criterion (Rissanen,

1989) for a number of initialization runs. In our experiments, however, we did not observe a critical

behavior in this sense; note that even if a low number of clusters is selected, some of them should

correspond to different cloud types, since the (overgrown) ROI is typically well-identified.

Another possibility for the user (not explored in this work) is to initialize the mean of the

clusters with the spectral signature of the class of interest using a spectral library. Obviously, the

problem of selecting c disappears if a training labeled set is available.

2.4 Cluster Labeling

Once clusters are determined in the previous step, the spectral signature of each cluster, sj(λ),

is estimated as the average of the spectra of the cluster pixels. This step excludes those pixels

with abnormally low membership values or posterior probability hkj.

It is important to emphasize that these spectral signatures of each cluster could differ a lot

from the spectra obtained when applying the EM algorithm over the image using the spectral

bands rather than the extracted features. The extracted features used to find the clusters are

optimized to increase separability between clouds, C, and any-other surface type, C, while in

the spectral domain these clusters could present a high degree of overlapping. At this point of

the process, the obtained clusters can be labeled into geo-physical classes taking into account

four complementary sources of information (Fig. 8): the thematic map with the distribution of

the clusters in the scene; the cluster parameters (µj ,Σj) of the extracted features; the spectral

signatures of cluster, sj ; and the location in the image of the pixels with the spectral signature

closer to sj. This information can be either analyzed directly by the user, compared to a spectral
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Figure 8: Thematic map with the distribution of the clusters in the scene (left), the spectral signatures

of the clusters (center), and the location in the image of the pixels with the most similar spectra (right).

library with representative spectra of all the classes of interest, or applying a set of threshold

tests.

During the labeling process, it is possible to reject a given cluster if it contains pixels corre-

sponding to both clouds and ground covers. In this case, after removing this components from

the mixture of normal distributions, we perform again a MAP classification on the whole image

to obtain the final cluster membership for each pixel in the image, hkj, and its corresponding

cluster label ω̂k.

Once all clusters have been related to a class with a geo-physical meaning (Fig. 9), it is

straightforward to merge all the clusters belonging to a cloud type. Since the EM algorithm

provides posterior probabilities (hkj ∈ [0, 1] and
∑c

j=1
hkj = 1), a probabilistic cloud index, based

on the clustering of the extracted features, can be computed as the sum of the posteriors of the

cloud-clusters C:

hkC =
∑

ωj⊂C

hkj (2.13)

However, if the clusters are well separated in the feature space, the posteriors decrease drastically

from one to zero in the boundaries between clusters (Fig. 10). Therefore, this Cloud Probability

index indicates the probability that one pixel belongs more to a cloud-cluster, C, than to one

of the other clusters, C, found in the image, but it does not give information about the cloud

content at subpixel level, which is very important when dealing with thin clouds or partially

covered pixels.

2.5 Spectral Unmixing

In order to obtain a cloud abundance map for every pixel in the image, rather than flags or

a binary classification, a spectral unmixing algorithm is applied to the multispectral image. The

linear spectral unmixing algorithm (LSU) (Chang, 2003) allows decomposing each pixel of the

image, ρk(λ), into a collection of constituent spectra or endmembers, and a set of corresponding

abundances that indicate the proportion of each endmember in the pixel.
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Figure 9: Left : Thematic map with the distribution in the scene of the classes of the clusters. Right :

Cloud Probability index computed from the posteriors of the cloud-clusters.

2.5.1 LSU algorithm

The algorithm used to perform the spectral unmixing is the Fully Constrained Linear Spectral

Unmixing (FCLSU) (Heinz and Chang, 2001), which guarantees a physical interpretation of the

results and can be formalized as follows:

ρk(λi) =

Q
∑

q=1

mq(λi)akq + ε (2.14)

subject to

0 ≤ akq ≤ 1 and
∑

q

akq = 1 (2.15)

where ρk(λi) is the value of the pixel k for the band i, Q represents the number of endmembers

that are being unmixed, being the coefficients akq of this combination the unmixing coefficients,

which can be interpreted as the abundance fractions of materials in a pixel. Finally, the term

ε represents the residual error per band. Equation (2.14) can be expressed in a matrix form as

ρk = M · ak + ε, where the spectral signatures of materials, mq, are expressed in the columns of

matrix M. The FCLSU algorithm solves a constrained linear least-squares problem minimizing

the norm of (M · ak − ρk) where the vector, ak, of independent variables is restricted to being

nonnegative (since it represent the contribution of reflectance signatures mq) and sum to one

(since it is supposed that M represents all the constituents in the image with at least one pure

independent spectrum).

2.5.2 Remarks on endmember extraction for cloud screening

In the literature, there are different approaches to determine the spectra of the different pure

constituents in the image (Keshava and Mustard, 2002; Plaza and Chang, 2006). However, in a

cloud screening framework, two specific considerations have to be taken into account. First, only

one endmember must be selected to represent clouds. This constrain contrasts with the selection

of the number of clusters, in which more clusters should model better such an heterogeneous class

as clouds. In the classification, most of the cloud-clusters consists of mixed pixels of thin clouds

and ground or borders and subpixel clouds. In the LSU method, we assume that clouds represent
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Figure 10: Left : Cloud Probability index computed from the posteriors of the cloud-clusters. Center :

Cloud Abundance computed from the unmixing coefficients of the cloud clusters. Right : Cloud abundance

product.

pure constituents and consequently only one endmember must represent them. Some examples

of the negative effects of including mixed thin cloud spectra as endmembers were reported in

Gómez-Chova et al. (2006). In the proposed algorithm, the cloud endmember, m1, is selected

from all the cloud pixels, ρk ⊂ C, looking for the brightest one (maximum fBr). The second issue

is related to the total number of endmembers. If the value of Q is selected to be too low, then

not all constituents will be extracted . On the other hand, if the value of Q is selected to be

too high, some extracted endmembers may be unwanted non-pure signatures. However, this does

not constitute a critical problem since we are not interested in obtaining accurate abundances for

all the constituents present in the image, but basically in the cloud abundance. For this reason,

obtaining some unpure ground endmembers, i.e. those mixture of two or more ground constituents,

is not a problem as this will only affect the abundances related to ground endmembers.

2.5.3 Endmember initialization algorithm

Taking into account the previous considerations, we use the Automated Target Generation

Process (ATGP) (Ren and Chang, 2003) to select the rest of endmembers, {mq}
Q
q=2

, from the

ground pixels, ρk ⊂ C. The ATGP finds the endmembers in accordance with an orthogonal sub-

space projection criteria and it normally outperforms the other common endmember initialization

algorithms (Plaza and Chang, 2006). In particular the ATGP is well-suited to our problem since

it starts with a initial endmember signature, m1, then finds the next endmember signature, m2,

looking for the ground pixel with the maximum absolute projection in the space orthogonal to

M = [m1], adds the new endmember to M = [m1,m2], and repeats the procedure until a set of

Q endmembers {m1,m2, . . . ,mQ} is extracted.

2.5.4 Cloud abundance

After the endmember selection, we apply the FCLSU to the image using all the available

spectral bands except bands particularly affected by atmospheric absorptions (λi ⊂ BA), since

the linear mixing assumption is not appropriate at those bands. The FCLSU provides the vector
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ak of abundances for each sample pixel k. As it happens with the probabilities of the clusters,

the abundance akq ∈ [0, 1] and
∑Q

q=1
akq = 1. Therefore, the Cloud Abundance is the sum of

the abundances of the cloud-clusters which, in our case, represents the abundance of the cloud-

endmember (Fig. 10):

akC =
∑

q⊂C

akq = ak1 (2.16)

As in the case of the probabilities, a threshold of akC would give a good cloud mask, but some

false detections could appear since the unmixing has been performed on the basis of spectral

signatures that could be non-pure pixels or, at least, non completely independent, thus providing

relatively high cloud abundances in ground covers with similar spectral signatures.

2.5.5 Cloud product

An improved cloud product map can be obtained when combining the Cloud Abundance, akC ,

and the Cloud Probability, hkC , by means of a pixel-by-pixel multiplication (Fig. 10, right).

φk = akChkC (2.17)

That is, combining two complementary sources of information processed by independent methods:

the degree of cloud abundance or mixing (obtained from the spectra) and the cloud probability

that is close to one in the cloud-like pixels and close to zero in remaining areas (obtained from

the extracted features).
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3 CHRIS Acquisition Modes

One of the main advantages of CHRIS instrument is the high configurability of its operation

mode. In fact, the number of bands and their nominal wavelength allocations changes to a great

extent from one mode to another. However, this advantage is a problem for the detection of

clouds since the method has to take into account the number and configuration of the spectral

bands for each CHRIS acquisition mode. For example, the oxygen and water vapour atmospheric

absorptions or the ice/snow absorption are only present in the spectral region registered by Modes

1 and 5. The spectral coverage of bands acquired by the different modes is depicted in Fig. 11.

The proposed cloud masking algorithm has been designed for CHRIS Modes with full spectral

information (Modes 1 and 5). Table 1 shows the available features depending on CHRIS acqui-

sition mode. In the case of the brightness and whiteness, the number of spectral bands used to

compute them is lower for modes 2, 3, and 4. Therefore the robustness and the discrimination

power of these features will be poorer for these modes. Moreover, the absorption features cannot

be computed at all for these modes. In consequence, the proposed algorithm could present a poor

performance for Modes 2-3-4 images in critical cloud screening situations, such as over bright

surfaces (ice, snow, sand, etc) and around cloud borders or thin semitransparent clouds.

Table 1: Available features depending on CHRIS acquisition mode and number of spectral bands used to

compute them.

Feature Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

fBr,V IS 22 10 7 5 8

fBr,NIR 11 4 6 8 10

fBr 33 14 13 13 18

fWh,V IS 22 10 7 5 8

fWh,NIR 11 4 6 8 10

fWh 33 10 13 13 18

fO2
3 – – – 3

fWV 2 – – – 2

In addition, the cloud screening module is designed for images processed at version 4.1 of the

CHRIS HDF files (Cutter and Johns, 2005) in order to take advantage of:

• the improved radiometric calibration which was poor in previous versions (underestimation

up to a factor two of the sensor measurements in the NIR) (Cutter, 2004) ,

• the additional acquisition information contained in the metadata attributes of the CHRIS

HDF file (image date, azimuth and zenith angles, etc),

• a quality mask added to the HDF data that includes pixel saturation information and

occurrence of errors (used by the noise reduction module (Gómez-Chova, 2007)).
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Figure 11: Top-to-bottom: Modes 1–5 CHRIS band locations (boxes) superimposed to a reflectance

spectra of healthy vegetation (dashed), bare soil (dash-dotted), and the atmospheric transmittance (solid).
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4 Conclusions

In this document, a methodology that faces the problem of accurately identifying the loca-

tion and abundance of clouds in hyperspectral images is described. The algorithm identifies the

location of clouds in the image and produces a cloud abundance map in order to quantify how

cloud presence affects the measured spectra. The cloud screening algorithm is based on well-

funded physical features, which are intended to increase separability between clouds and ground

covers, and are extracted from the converted TOA reflectance in order to reduce dependence

on illumination and geometric acquisition conditions. We should note that one critical feature

introduced in this approach is the use of the atmospheric oxygen and water vapor absorption

bands to improve cloud screening results. Afterwards, the main modules of the cloud screening

algorithm have been formulated. An operative unsupervised classification is performed based on

the extracted features in order to adapt the cloud screening to the given image conditions, mainly

the atmospheric conditions, the background, and the present cloud types. This step allows the

user to easily discriminate between cloud free and cloudy regions, where the method provides a

cloud abundance product, which is based on spectral unmixing algorithm.

Several remarks and conclusions can be drawn. First, the cloud screening method has been

proposed as an arrangement of different purpose-designed modules, which have been formulated

in terms of simple and operational algorithms that cover the essential requirements for cloud

screening process. These modules can be changed by more advanced algorithms or modified to

adapt to the characteristics of the sensor.

A second important remark is that the method has been implemented to use self-contained

information provided with CHRIS products. The inputs required by the cloud masking algorithm

are the CHRIS image corrected of noises, image acquisition parameters extracted from the header

information, and a set of classification parameters adjusted for each acquisition mode.

Finally, an important aspect of the proposed method is that it provides a cloud abundance

product to the user that estimates the contribution of clouds to the spectra of image pixels. This

information can be used to better describe detected clouds (subpixel coverage, transparency, cloud

type) and to generate cloud masks with different restrictive levels depending on the application.
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22 L. Gómez-Chova et al. Cloud Screening ATBD



Development of CHRIS/PROBA modules for the BEAM toolbox ESRIN/Contract No. 20442/07/I-LG

Bibliography

Barnsley, M., Settle, J., Cutter, M., Lobb, D., and Teston, F. (2004). The PROBA/CHRIS

mission: a low-cost smallsat for hyperspectral, multi-angle, observations of the Earth surface

and atmosphere. IEEE Transactions on Geoscience and Remote Sensing, 42(7):1512–1520.

Buriez, J. C., Vanbauce, C., Parol, F., Goloub, P., Herman, M., Bonnel, B., Fouquart, Y., Couvert,

P., and Seze, G. (1997). Cloud detection and derivation of cloud properties from POLDER.

International Journal of Remote Sensing, 18(13):2785–2813.

Chang, C. (2003). Hyperspectral Imaging: Techniques for Spectral Detection and Classification.

Kluwer Academic/Plenum Publishers.

Chapman, R. M. (1962). Cloud distributions and altitude profiles from satellite. Planetary Space

Science, 9:70–71.

Cutter, M. (2004). CHRIS calibration issues. In (ESA-SP-578), E. P. D., editor, 2nd CHRIS/Proba

Workshop.

Cutter, M. and Johns, L. (2005). CHRIS data products – latest issue. In (ESA-SP-593), E. P. D.,

editor, 3rd CHRIS/Proba Workshop.

Davies, D. and Bouldin, D. (1979). A cluster separation measure. IEEE Trans. Pattern Anal.

Machine Intell., PAMI-1(2):224–227.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39:1–38.

Diner, D., Clothiaux, E., and Girolamo, L. D. (1999). MISR Multi-angle Imaging Spectro-

Radiometer Algorithm Theoretical Basis. Level 1 Cloud Detection. Jet Propulsion Laboratory,

JPL D-13397.

Duda, R. and Hart, P. (1973). Pattern classification and scene analysis. Wiley, New York.

Fisher, J. and Grassl, H. (1991). Detection of cloud-top height from backscattered radiances within

the Oxygen A band. Part 1: Theoretical study. Journal of Applied Meteorology, 30:1245–1259.
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